Xiegu VG4 Review | First Impressions, Tuning Notes, and Initial Experience (2024)

IntroductionI have recently reengaged in the amateur radio hobby after a long hiatus. My primary technical focus is currently on practical and efficient antennae. Like most everything in life, antenna design, configuration, mounting, orientation, etc., are a compromise involving numerous variables. Most of my experience to date has been with simple wire antenna and I have enjoyed reasonably good performance even near the solar cycle minimum (e.g., Boston to Ukraine voice contacts using a 40 m EFHW at 5 watts). My interest in exploring vertical antennae and specifically the Xiegu VG4 was to evaluate (qualitatively for now) potential benefits and tradeoffs between antenna types – with verticals, for example, having a low take-off angle and radiating uniformly in the azimuthal direction versus the higher take-off angle and radiation nulls that horizontal center fed dipoles and EFHWs exhibit. The VG4 covered the four bands of most interest to me, and I was especially interested in its 40 m capability.
 

Antenna assembly went very smoothly. The supplied instructions were sufficient but perhaps could benefit from additional information. I made my own initial choice on tube-to-tube insertion lengths (see below in Initial Build section) and I received a quick response and an excellent photo from customer service to confirm the intended connection point for the braid coming off the matching transformer box (see photo). I understand that Radioddity and/or Xiegu are developing enhanced documentation for the VG4.

BandResonant Frequency (ƒ(r))VSWR @ ƒ(r)
10 meterƒ(r) = 27.8 MHz1.3
15 meterƒ(r) = 27.8 MHz1.05
20 meterƒ(r) = 14.0 MHz1.05
40 meterƒ(r) = 6.9 MHz1.4

10 Meter Band Adjustments

The 10 meter band radiating elements were easily accessible with a ladder so I was able to make adjustments and measurements while the antenna remained vertically mounted to the test fixture. I made three adjustments from the initial build length and observed the corresponding shifts in resonant frequencies.
 

10 Meter Band Adjustments / Measurement Configuration [A]

BandInitial build-3 cm-6 cm-9 cm
10 meterƒ(r) = 27.8 MHzƒ(r) = 28.2 MHzƒ(r) = 28.5 MHzƒ(r) = 28.7 MHz
15 meterƒ(r) = 21.2 MHzƒ(r) = 21.2 MHzƒ(r) = 21.25 MHzƒ(r) = 21.27 MHz
20 meterƒ(r) = 14.0 MHzƒ(r) = 14.02 MHzƒ(r) = 14.02 MHzƒ(r) = 14.04 MHz
40 meterƒ(r) = 6.9 MHzƒ(r) = 6.9 MHzƒ(r) = 6.9 MHzƒ(r) = 6.9 MHz


Of note is that the adjustments at this point showed a measurable shift in the 10 meter band resonant frequency with a modest change in radiating element length. At this configuration, a 9 cm reduction in length yielded a 900 kHz shift, or about 100 kHz increase in resonant frequency per centimeter reduction in section length ( -100 kHz/cm). I observed little to no change in resonant frequency for the lower bands with the 15 meter band shifting only about -8 kHz/cm.
 

Relationship Between Close-to-Ground Vertical and Horizontal Orientations

I dismounted the antenna from the test fixture and laid it horizontally across supports (antenna measurement configuration [B] described above). Due to the VG4’s overall length, adjustments to the lower bands needed to be done with the antenna closer to ground level. Also, I wanted to see what, if any, correlations could be made between measurements made in a horizontal orientation near ground, in a vertical orientation in a test fixture near ground, and the final installation at 6 meters above ground level. This information would potentially be useful to minimize the number of times the antenna would need to be raised and lowered from its intended final installation.
 

Comparison of Measurement Configurations [A] vs [B]

BandConfiguration [A]Configuration [B]
10 meterƒ(r) = 28.7 MHzƒ(r) = 28.0 MHz
15 meterƒ(r) = 21.27 MHzƒ(r) = 21.22 MHz
20 meterƒ(r) = 14.04 MHzƒ(r) = 14.04 MHz
40 meterƒ(r) = 6.9 MHzƒ(r) = 6.9 MHz

At this point, it was encouraging to see a reasonable match of the resonant frequencies observed in the vertical and horizontal orientations albeit both close to ground. The thought is that one can take advantage of this by establishing the approximate relationship between length changes and corresponding resonant frequency shifts would facilitate easier initial band tunning. Resonant frequency shifts from close-to-ground orientations to final installation elevation will be discussed later.

15, 20 and 40 Meter Band AdjustmentsAt this point, the 15 meter resonant frequency was close to my target and, without knowing yet how it may shift at final elevation, I decided to leave that element length unchanged.

The 20 meter resonant frequency was significantly below my target so I ran through a set of length adjustments and corresponding resonant frequency measurements while the antenna was in the horizontal near ground measurement configuration [B].
 

20 Meter Band Adjustments at Measurement Configuration [B]

Bandpost 10 m adjust-1.5 cm-6 cm-8 cm
10 meterƒ(r) = 28.0 MHzƒ(r) = 28.0 MHzƒ(r) = 28.0 MHzƒ(r) = 28.0 MHz
15 meterƒ(r) = 21.22 MHzƒ(r) = 21.22 MHzƒ(r) = 21.22 MHzƒ(r) = 21.2 MHz
20 meterƒ(r) = 14.04 MHzƒ(r) = 14.063 MHzƒ(r) = 14.135 MHzƒ(r) = 14.16 MHz
40 meterƒ(r) = 6.9 MHzƒ(r) = 6.9 MHzƒ(r) = 6.93 MHzƒ(r) = 6.93 MHz

Of note, as stated by Xiegu, there is essentially no impact on the upper bands when making adjustments to lower bands – so 10 m and 15 m resonant frequencies were not affected. And for the range of 20 m radiating element length changes carried out here, there was only a small shift in the 40 m resonant frequency. Empirically, for 20 meter band tuning, measurements suggest a resonant frequency shift with section length changes of approximately -15 kHz/cm.

A similar exercise was carried out with the antenna in the horizontal near-ground measurement configuration [B] to determine the 40 meter band tuning guideline. Empirically, measurements suggest a resonant frequency shift with radiating element length change to be approximately 2.4 kHz/cm.
 

Relationship Between Close-to-Ground and At-Final-Elevation Measurement Configurations

At this point, I felt I had enough empirical information in hand for the close-to-ground configurations and was ready to raise the antenna to its final elevation. I made a final set of measurements in all three measurement configurations for the antenna as left from the most recent experiment above.
 

Comparison of Measurement Configurations [A] vs [B] vs [C]

BandConfiguration [A]Configuration [B]Configuration [C]
10 meterƒ(r) = 28.7 MHzƒ(r) = 28.0 MHzƒ(r) = 28.4 MHz
15 meterƒ(r) = 21.18 MHzƒ(r) = 21.05 MHzƒ(r) = 21.27 MHz
20 meterƒ(r) = 14.09 MHzƒ(r) = 14.18 MHzƒ(r) = 14.35 MHz
40 meterƒ(r) = 6.98 MHzƒ(r) = 7.10 MHzƒ(r) = 7.23 MHz

The data suggests that the higher bands are affected more by ground coupling effects than the lower bands. It is very likely that the absolute value of the measured data reported above are specific to my measurement environment.
 

Fine Tuning and Characteristics at Final Elevation

At this point I am armed with resonant frequencies at the intended elevation and empirical estimates of the relationship between radiating element length changes and resonant frequency shifts. For the 10 and 15 meter bands, the resonant frequencies was at or very close to my target. In addition, the bandwidth is sufficiently broad (observed to be neat that specified by Xiegu) that no adjustment was warranted. However, the 20 and 40 meter band resonant frequencies were off a bit from my target and warranted adjustment – which of course meant the mast with antenna attached needed to come down and back up one more time (no small feat even with help from family members). I used the guidelines established above to make my adjustments (+8 cm on the 20 m band; +21 cm on the 40 m band).

Comparison of Measurements at Final Elevation
(before and after final adjustment)

Band1st time at elevation2nd time at elevation
10 meterƒ(r) = 28.4 MHzƒ(r) = 28.4 MHz
15 meterƒ(r) = 21.27 MHzƒ(r) = 21.26 MHz
20 meterƒ(r) = 14.35 MHzƒ(r) = 14.23 MHz
40 meterƒ(r) = 7.23 MHzƒ(r) = 7.16 MHz

The 20 meter band adjustment was spot on. The 40 meter band adjustment overshot my target slightly, by about 15 kHz. I made the easy decision that one more small tweak was not worth the substantial effort of bringing the mast + antenna down and then back up again!

Key antenna length measurements
(after the 2nd (final) adjustment)

BandSection Measurement DescriptionLength (cm)Length (inches)
10 meterƒ(r) = 28.7 MHz340.4134
15 meterƒ(r) = 21.18 MHz24.1 9 1/2
20 meterƒ(r) = 14.09 MHz42.9 16 7/8
40 meterƒ(r) = 6.98 MHz181.3 71 3/8

Plots of SWR as a function of frequency from the NanoVNA covering the full range of the United States amateur 40, 20, 15 and 10 meter bands after final adjustment and at final elevation are shown below.

Xiegu VG4 Review | First Impressions, Tuning Notes, and Initial Experience (1)

Screen shots from an IC-7300 show SWR as a function of frequency measured after final adjustment at final elevation for the portions of the 40, 20, 15, and 10 meter bands that are of particular interest for my intended use of the VG4 are shown below.

Xiegu VG4 Review | First Impressions, Tuning Notes, and Initial Experience (2)

Xiegu VG4 Review | First Impressions, Tuning Notes, and Initial Experience (3)

Xiegu VG4 Review | First Impressions, Tuning Notes, and Initial Experience (4)

Xiegu VG4 Review | First Impressions, Tuning Notes, and Initial Experience (5)

Resonant Frequency Shift in Wet Conditions

Resonant frequency shifts during wet conditions (rain and for some period after) exhibited with antennae in general, and with vertical HF antennas using traps in particular, are known to occur. I had the opportunity to measure the effects of wet conditions on the VG4 shortly after a moderately heavy rain.

Comparison of Measurements Under Dry vs Wet conditions
(after final adjustment at Final Elevation)

BandDryWet
10 meterƒ(r) = 28.4 MHzƒ(r) = 27.94 MHz
15 meterƒ(r) = 21.26 MHzƒ(r) = 20.77 MHz
20 meterƒ(r) = 14.23 MHzƒ(r) = 13.96 MHz
40 meterƒ(r) = 7.16 MHzƒ(r) = 7.04 MHz

The resulting shifts in resonant frequency were not unexpected. The magnitude of the frequency shift, coupled with the shape of the SWR curves, suggests that tuner adjustments are almost certainly warranted on the 40 and 20 meter bands, probably also on the 15 meter band, and less so on the 10 meter band.

As expected, the VG4 resonant frequencies returned to almost exactly the previously measured values when conditions dried.

Discussion on various radio forums frequently point to moisture ingress to the traps as the primary culprit for SWR shifts in vertical HF antennae. Others hold the view that there are different, broader mechanisms at play (such as changing ground moisture level, for example). In my opinion, the shifts that I observed (shown above) are unlikely due to moisture ingress in the VG4 itself given the new condition and the observed quality of the upper trap seals, the top radiating element cap, and the matching transformer box seal.
 

Initial Performance on the Air

My experience on the air pleasantly matched my expectations. I was able to quickly pick up a few new countries in the first few weeks (snapshot from my QRZ log shown below – all at 100 W from 30 km northwest of Boston, MA). Of course, this provides only a qualitative assessment of VG4 performance, and my other benchmarks are primarily wire antennae. Quantitative comparisons between the VG4 and other antennae could be made using WSPR, for example, and may be one of my future projects.

Xiegu VG4 Review | First Impressions, Tuning Notes, and Initial Experience (6)

Summary and Final Thoughts

I found the VG4 to be of high-quality materials and components that were easily assembled. Tuning was relatively straightforward as described by Xiegu. For my benefit to simplify the tuning process (and possible for the benefit of others), I found the approximate relationship between length adjustments and resonant frequency shift for the following bands to be:
10 meter band: - 100 kHz / cm
20 meter band: - 15 kHz / cm
40 meter band: - 2.4 kHz / cm
When it comes to antenna height, it is generally thought higher is better. SWR can certainly be influenced by distance from ground as well as other objects. Xiegu’s recommendation of 3 meter minimum base elevation seems like a reasonable height provided nearby structures are not significantly above that height. In my case, garage and house structures would have distorted the radiation pattern at that minimum elevation so I elected to mount the antenna with a base elevation at 6 meters above grade (2 meters above the roof peak) and took advantage of the building to support the mast. I did not feel the need to further stabilize the antenna with guy wires. Xiegu has a published wind speed rating of 35 m/s (approximately 80 mph). I watched the VG4 closely during a storm with 50 to 60 mph gusts and thought it was quite sturdy.

In my opinion, the VG4 is worthy of consideration from a couple of perspectives. The price – performance point makes it a great choice for a first or single HF antenna – a) multi-band (single coax run / no need for antenna switches); and b) relatively small footprint (useful where a tower or long wires are not practical). In my case, I was looking to install a multi-band antenna that also covered 40 meters at a remote location on our property where a single coax run was a major cost constrain. For me, it was a great choice.

73 de W1ENB

Xiegu VG4 Review | First Impressions, Tuning Notes, and Initial Experience (2024)
Top Articles
Kamala Harris and Nancy Pelosi: How America's most powerful women look to make history again
Sam's Club Gas Price Hilliard
Dairy Queen Lobby Hours
Chicago Neighborhoods: Lincoln Square & Ravenswood - Chicago Moms
Greedfall Console Commands
Lifebridge Healthstream
Ross Dress For Less Hiring Near Me
How to change your Android phone's default Google account
Dr Klabzuba Okc
Optimal Perks Rs3
Https Www E Access Att Com Myworklife
Sitcoms Online Message Board
Osrs Blessed Axe
C Spire Express Pay
How Much Is Tj Maxx Starting Pay
Evil Dead Rise Showtimes Near Regal Columbiana Grande
Rhinotimes
How pharmacies can help
zom 100 mangadex - WebNovel
Yog-Sothoth
Holiday Gift Bearer In Egypt
About My Father Showtimes Near Copper Creek 9
What Are The Symptoms Of A Bad Solenoid Pack E4od?
Inbanithi Age
Page 2383 – Christianity Today
Craigslist Ludington Michigan
10 Best Places to Go and Things to Know for a Trip to the Hickory M...
Firefly Festival Logan Iowa
Craigslist Comes Clean: No More 'Adult Services,' Ever
Dell 22 FHD-Computermonitor – E2222H | Dell Deutschland
Emuaid Max First Aid Ointment 2 Ounce Fake Review Analysis
Craigslist Sf Garage Sales
Loopnet Properties For Sale
Ff14 Laws Order
Martin Village Stm 16 & Imax
Bus Dublin : guide complet, tarifs et infos pratiques en 2024 !
Morlan Chevrolet Sikeston
Selfservice Bright Lending
Petsmart Northridge Photos
Columbia Ms Buy Sell Trade
Jasgotgass2
Oppenheimer Showtimes Near B&B Theatres Liberty Cinema 12
Login
Swoop Amazon S3
22 Golden Rules for Fitness Beginners – Barnes Corner Fitness
Sea Guini Dress Code
The 13 best home gym equipment and machines of 2023
Cars & Trucks near Old Forge, PA - craigslist
Pilot Travel Center Portersville Photos
Home | General Store and Gas Station | Cressman's General Store | California
Prologistix Ein Number
Qvc Com Blogs
Latest Posts
Article information

Author: Annamae Dooley

Last Updated:

Views: 5806

Rating: 4.4 / 5 (65 voted)

Reviews: 88% of readers found this page helpful

Author information

Name: Annamae Dooley

Birthday: 2001-07-26

Address: 9687 Tambra Meadow, Bradleyhaven, TN 53219

Phone: +9316045904039

Job: Future Coordinator

Hobby: Archery, Couponing, Poi, Kite flying, Knitting, Rappelling, Baseball

Introduction: My name is Annamae Dooley, I am a witty, quaint, lovely, clever, rich, sparkling, powerful person who loves writing and wants to share my knowledge and understanding with you.